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Abstract

The free flexural vibration of symmetric rectangular honeycomb panels having simple support boundary
conditions is investigated in this paper using the classical plate theory, Mindlin’s improved plate theory,
and Reddy’s third-order plate theory. The honeycomb core of hexagonal cells is modeled as a thick layer of
orthotropic material whose physical and mechanical properties are determined using the Gibson and Ashby
correlations. The comparative studies conducted on aluminum honeycomb panels indicate that both the
classical and improved plate theories are inadequate for the flexural vibration of honeycomb panels.
r 2004 Published by Elsevier Ltd.
1. Introduction

Honeycomb sandwich panels are commonly used in various industries because of their high
strength-to-weight ratios, desirable acoustic properties, and many other advantages. It is well
understood that the classical plate theory (CPT) yields unacceptable results for composite plates
because the transverse shear deformations are neglected. The first-order shear deformation plate
theory (FSDPT), developed by Mindlin [1] for isotropic plates, and Yang et al. [2] for laminated
see front matter r 2004 Published by Elsevier Ltd.

jsv.2004.06.028

ding author.

resses: syu@ryerson.ca (S.D. Yu), cleghorn@mie.utoronto.ca (W.L. Cleghorn).

sociate Professor, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto,

da M5B 2K3.

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

Nomenclature

Aij elements of extensional (first order)
stiffness matrix

aij Aij normalized with respect to E0h
3

a panel/plate dimension in the x direc-
tion

ak lower thickness coordinate of layer k

b panel/plate dimension in the y direc-
tion

bk upper thickness coordinate of layer
k

Dij elements of flexural (third order)
stiffness matrix

dij Dij normalized with respect to E0h
3

E1;E2 moduli of elasticity
E0 reference modulus of elasticity
Fij elements of fifth order stiffness

matrix
f ij F ij normalized with respect to E0h

5

Gij shear moduli
Hij elements of seventh order stiffness

matrix
h plate/panel thickness
hij Hij normalized with respect to E0h

7

hc core thickness
Ik kth order mass moment of inertia
ik Ik normalized with respect to r0h

k

m integer representing number of half
sine waves in the x direction

m ¼ mpfa

n integer representing number of half
sine waves in the y direction

n ¼ npfb

Q
ðkÞ
ij elements of material property matrix

for layer k; k ¼ 1 or f (faces); k ¼ 2
or c (core)

t time
ux; uy; uz displacements in the x; y; and z

directions, respectively
w lateral displacement
W lateral displacement normalized

with respect to plate/panel thickness
x; y; z Cartesian coordinates

Greek symbols

a core-to-panel thickness ratio
�ij strain components
fa thickness to length ratio ¼ h=a

fb thickness to width ratio ¼ h=b

Z non-dimensional coordinate ð¼ y=bÞ

l2 eigenvalue
nij Poisson’s ratios
r density
r0 reference density
rðkÞ density of layer k material
sij stress components
o natural frequency
x non-dimensional coordinate (¼ x=a)
cx angle of rotation of material line

normal to the mid-plane in the xoz

plane
Cx amplitude of cx

cy angle of rotation of material line
normal to the mid-plane in the yoz

plane
Cy amplitude of cy
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plates, yields acceptable results for thin and moderately thick plates. Reddy [3] developed a
simplified third-order shear deformation plate theory (TSDPT). Compared to the FSDPT, the
TSDPT, free from use of any shear correction factor, contains no additional field variables while
satisfying the zero transverse shear stress conditions at the top and bottom surfaces of a plate.
The TSDPT provides a parabolic distribution of the transverse shear stresses in the
thickness direction. There are various other higher order plate theories available in the literature,
e.g., Lo et al. [4]. Those higher order theories involve additional field variables, and are very
complicated to use.
Honeycomb panels are commonly used in the aerospace industry, race car industry, and other

industries where high strength-to-weight ratios and desirable acoustic properties are essential. A
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typical honeycomb sandwich panel of length a, width b and height h, shown in Fig. 1, consists of
two face sheets and arrays of open cells glued to the inner surfaces of the face sheets. To achieve
high flexural strengths or flexural natural frequencies, the honeycomb core height is usually about
80–95% of the total panel thickness.
A review of literature indicates that little work on flexural vibration of honeycomb panels has

been carried out. Millar [5] investigated the behavior of honeycomb panels under acoustic load.
Cunningham and White [6], and Cunningham et al. [7] studied free vibration of honeycomb
panels. For an efficient analysis of free vibration and buckling of sandwich panels having porous
cores, the equivalent continuum approach is often used in Ref. [8]. Lok and Cheng [9] considered
a truss-core sandwich panel as a homogenous single layer orthotropic thick plate; they concluded
that the equivalent continuum approach yields satisfactory results if the panel dimensions are
significantly larger than the cell dimensions.
Experimental results and three-dimensional modeling conducted by Lai [10] have indicated that

the honeycomb core can be modeled as an equivalent homogeneous orthotropic material in
flexural vibration analyses. However, to use the continuum model for analyzing the free vibration
of honeycomb panels, it is important that reliable values of the equivalent material properties of
honeycomb cores be used. The equivalent material properties of honeycomb cores may be
obtained from experiments, empirical correlations, and solid mechanics modeling. According to
Bitzer [11], the material properties of primary importance are the out-of-plane properties; the in-
plane properties are secondary. Wilfried reported in Ref. [12] that these properties are dependent
not only on cell material and cell geometry, but also on the panel dimensions. Studies of
honeycomb properties may be found in Refs. [13–15].
In this paper, the porous honeycomb core is considered as a homogenous orthotropic material

whose equivalent material properties are determined using the correlations by Gibson and Ashby
[13]. The three plate theories CPT, FSDPT and TSDPT are employed to analyze free flexural
vibration of symmetric honeycomb panels. To obtain an exact analytical solution, the two in-
plane material principal directions of honeycomb cores, x1 and x2; as shown in Fig. 2, are assumed
to be the same as the panel in-plane coordinates, x and y, respectively. As a test case, numerical
results were also obtained for isotropic plates.
Fig. 1. A typical honeycomb panel.
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Fig. 2. A rectangular honeycomb panel having a special core alignment.
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2. Three plate theories

In this section, the governing differential equations for the small flexural vibration of symmetric
honeycomb panels in terms of the displacements will be presented for the CPT, the IPT, and the
TSDPT. Because bending and in-plane stretching/compression are uncoupled for symmetric
honeycomb panels, the in-plane displacements not caused by bending are discarded in this paper.
Since the normal stress and strain in the thickness direction of a plate are not included in any of
the three plate theories, the following reduced stress–strain relationship in an isotropic or specially
orthotropic constitutive layer may be used to formulating the governing equations of motion

sxx

syy

syz

szx

sxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

¼

Q
ðkÞ
11 Q

ðkÞ
12 0 0 0

Q
ðkÞ
12 Q

ðkÞ
22 0 0 0

0 0 Q
ðkÞ
44 0 0

0 0 0 Q
ðkÞ
55 0

0 0 0 0 Q
ðkÞ
66

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

�xx

�yy

�yz

�zx

�xy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: (1)

The stiffness and inertia parameters may be established by considering a honeycomb panel as a
three layered laminate structure. For a honeycomb panel, the bottom and top face sheets are
designated as layers 1 and 3, respectively; the core is designated as layer 2. As shown in Fig. 3,
each layer is bounded by the coordinates, ak and bk; in the thickness direction. These parameters
appeared in the three plate theories as follows:

ðAij ;Dij ;Fij;HijÞ ¼
X3
k¼1

Z bk

ak

Q
ðkÞ
ij ð1; z2; z4; z6Þdz ði; j ¼ 1; 2; 6; 4; 5Þ;

ðI1; I3; I5; I7Þ ¼
X3
k¼1

Z bk

ak

rðkÞð1; z2; z4; z6Þdz: (2)
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Fig. 3. Coordinates in the thickness direction for the core and two face sheets.
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It is mentioned that in the IPT, the extensional stiffness parameters A44 and A55 are multiplied
by a shear correctional factor ðk ¼ 0:8601Þ: For convenience, the stiffness and inertial parameters
are non-dimensionalized in the following manner:

ðaij; dij; f ij ; hijÞ ¼
Aij

E0h
;

Dij

E0h
3
;

Fij

E0h
5
;

Hij

E0h
7


 �
; ði1; i3; i5; i7Þ ¼

I1

r0h
;

I3

r0h
3
;

I5

r0h
5
;

I7

r0h
7

 !
: (3)

With the help of the core-to-panel thickness ratio, or a ¼ hc=h; the non-dimensional stiffness and
inertial parameters may be readily obtained for a symmetric honeycomb panel. They are written
as

aij ¼
Q

ðcÞ
ij

E0
aþ

Q
ð f Þ
ij

E0
ð1� aÞ; dij ¼

1

12

Q
ðcÞ
ij

E0
a3 þ

Q
ð f Þ
ij

E0
ð1� a3Þ

" #
;

f ij ¼
1

80

Q
ðcÞ
ij

E0
a5 þ

Q
ð f Þ
ij

E0
ð1� a5Þ

" #
; hij ¼

1

448

Q
ðcÞ
ij

E0
a7 þ

Q
ð f Þ
ij

E0
ð1� a7Þ

" #
;

i1 ¼
rc

r0
aþ

rð f Þ

r0
ð1� aÞ; i3 ¼

1

12

rðcÞ

r0
a3 þ

rð f Þ

r0
ð1� a3Þ

� �
;

i5 ¼
1

80

rðcÞ

r0
a5 þ

rð f Þ

r0
ð1� a5Þ

� �
; i7 ¼

1

448

rðcÞ

r0
a7 þ

rð f Þ

r0
ð1� a7Þ

� �
;

where E0 is the reference modulus of elasticity; h is the total thickness of a honeycomb panel; hc is
the height of the honeycomb core; r0 is the reference density used to normalize inertial quantities.
For simplicity, the reference density and modulus of elasticity are chosen to be those of the face
material in this paper.

2.1. Classical plate theory

In the classical plate theory, it is assumed that straight material lines normal to the plate mid-
plane before deformation remain straight and normal to the mid-plane after deformation. The
displacements of a material point ðx; y; zÞ caused by bending may be expressed in terms of a single
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lateral displacement

ux ¼ �z
qwðx; y; tÞ

qx
; uy ¼ �z

qwðx; y; tÞ

qy
; uz ¼ wðx; y; tÞ: (4)

The equation of motion and the consistent boundary conditions for the lateral displacement, w,
may be derived from the Hamilton’s principle. The governing equation of free flexural of a
symmetric honeycomb panel may be written as

D11
q4w
qx4

þ 2ðD12 þ 2D66Þ
q4w

qx2qy2
þ D22

q4w
qy4

þ I1 €w � I3
q2 €w
qx2

þ
q2 €w
qy2


 �
¼ 0: (5)

Introducing the transformations

x ¼ ax; y ¼ bZ; wðx; y; zÞ ¼ hW ðx; ZÞ sinðotÞ; (6)

Eq. (5) may be normalized and written as

d11f
4
a

q4W

qx4
þ 2ðd12 þ 2d66Þf

2
af
2
b

q4W

qx2qZ2
þ d22f

4
b

q4W
qZ4

� l4 i1W � i3
q2W

qx2
þ
q2W
qZ2


 �� �
¼ 0; (7)

where fa ¼ h=a; fb ¼ h=b and l2 ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=E0

p
:

For a rectangular honeycomb panel simply supported along all four edges, an exact solution for
the dimensionless amplitude of flexural vibration may be written as

W ðx; yÞ ¼
X1

m;n¼1

Zmn sin mpx sin npZ: (8)

Substituting the above solution into Eq. (7), one may obtain the eigenvalue

l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d11m

4 þ 2ðd12 þ d66Þm
2n2 þ d22n

4
p

i1 þ i3½m
2 þ n2�

ðm; n ¼ 1; 2; . . .Þ; (9)

where m ¼ mpfa; n ¼ npfb:
Solutions for symmetric honeycomb panels having other combinations of boundary conditions

along each of the four edges may be obtained using the method of superposition, developed by
Gorman [16] for the free vibration analysis of isotropic thin plates.

2.2. Improved plate theory

In the improved plate theory, it is assumed that straight material lines normal to the plate mid-
plane before deformation remain straight after deformation. The displacements of a material
point ðx; y; zÞ caused by bending may be expressed in terms of the lateral displacement and two
angles of rotation as

ux ¼ zcxðx; y; tÞ; uy ¼ zcyðx; y; tÞ; uz ¼ wðx; y; tÞ: (10)
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The equation of motion for free flexural vibration of a symmetric honeycomb panel may be
written as

A55
q2

qx2
þ A44

q2

qy2
A55

q
qx

A44
q
qy

�A55
q
qx

D11
q2

qx2
þ D66

q2

qy2
� A55 ðD12 þ D66Þ

q2

qxqy

�A44
q
qy

ðD12 þ D66Þ
q2

qxqy
D66

q2

qx2
þ D22

q2

qy2
� A44

2
6666666664

3
7777777775

w

cx

cy

8>><
>>:

9>>=
>>;

¼ �

I1 €w

I3 €cx

I3 €cy

8>><
>>:

9>>=
>>;: ð11Þ

Introducing the transformations

w ¼ hW ðx; ZÞ sinðotÞ; cx ¼ Cxðx; ZÞ sinðotÞ; cy ¼ Cyðx; ZÞ sinðotÞ: (12)

Eq. (11) may be rewritten as

a55f
2
a

q2

qx2
þ a44f

2
b

q2

qZ2
a55fa

q
qx

a44fb

q
qZ

�a55fa

q
qx

d11f
2
a

q2

qx2
þ d66f

2
b

q2

qZ2
� a55 ðd12 þ d66Þfafb

q2

qxqZ

�a44fb

q
qZ

ðd12 þ d66Þfafb

q2

qxqZ
d66f

2
a

q2

qx2
þ d22f

2
b

q2

qZ2
� a44

2
66666666664

3
77777777775

W

Cx

Cy

8>><
>>:

9>>=
>>;

þ l4

i1 0 0

0 i3 0

0 0 i3

2
664

3
775

W

Cx

Cy

8>><
>>:

9>>=
>>; ¼

0

0

0

8>><
>>:

9>>=
>>;: ð13Þ

The boundary conditions, which are consistent with the improved plate theory, are
studied by Reismann in Ref. [17]. For a simply supported rectangular honeycomb
panel, an exact solution satisfying boundary conditions along the four edges may be sought
employing the series

W ðx; ZÞ ¼
P1

m;n¼1
Zmn sin mpx sin npZ; Cxðx; ZÞ ¼

P1
m;n¼1

X mn cos mpx sin npZ;

Cyðx; ZÞ ¼
P1

m;n¼1
Y mn sin mpx cos npZ:

(14)
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Substituting Eq. (14) into Eq. (13), one obtains the following homogeneous algebraic equations,
leading to a standard eigenvalue problem for free vibration:

½½Mmn�
�1½Kmn� � l4½I ��

Zmn

X mn

Y mn

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>;; (15)

where

½Mmn� ¼

i1 0 0

0 i3 0

0 0 i3

2
64

3
75; ½Kmn� ¼

a55m
2 þ a44n

2 a55m a44n

a55m d11m
2 þ d66n

2 þ a55 ðd12 þ d66Þm n

a44n ðd12 þ d66Þm n d66m
2 þ d22n

2 þ a44

2
64

3
75:
2.3. Third-order shear deformation plate theory

In the third-order shear deformation plate theory developed by Reddy [3,18], straight material
lines normal to the plate mid-plane before deformation will no longer remain straight. The
displacements of a material point ðx; y; zÞ caused by bending may be written as

ux ¼ z �
4z3

3h2


 �
cxðx; y; tÞ �

4z3

3h2
qwðx; y; tÞ

qx
;

uy ¼ z �
4z3

3h2


 �
cyðx; y; tÞ �

4z3

3h2
qwðx; y; tÞ

qy
;

uz ¼ wðx; y; tÞ: ð16Þ

Although Reddy’s plate theory involves only three field variables, which are dependent on x, y

and t, this theory allows transverse shear stresses/strains to vary in a quadratic polynomial, and
in-plane normal stresses/strains and in-plane shear stress/strain in a cubic polynomial in the plate
thickness direction. These features are important in dealing with honeycomb panels having thick
and soft cores. The governing equations for free vibration of a symmetric honeycomb panel may
be written as

A55
q2w
qx2

þ A44
q2w
qy2

�
16

9h4
H11

q4w
qx4

þ 2ðH12 þ H66Þ
q4w

qx2qy2
þ H22

q4w
qy4


 �

þ
q
qx

A55cx þ
4

3h2
F11

q2cx

qx2
þ ðF12 þ 2F66Þ

q2cx

qy2


 �� �

þ
q
qy

A44cy þ
4

3h2
ðF12 þ 2F66Þ

q2cy

qx2
þ F22

q2cy

qy2

 !" #

¼ I1 €w �
16

9h4
I7

q2 €w
qx2

þ
q2 €w
qy2


 �
þ
4

3h2
I5 �

4

3h2
I7


 �
q €cx

qx
þ

q €cy

qy

 !
; ð17Þ
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�
q
qx

A55w þ
4

3h2
F11

q2w
qx2

þ ðF12 þ 2F66Þ
q2w
qy2


 �� �

þ D11
q2cx

qx2
þ D66

q2cx

qy2
� A55cx þ ðD12 þ D66Þ

q2cy

qxqy

¼ �
4

3h2
I5 �

4

3h2
I7


 �
q €w
qx

þ I3 �
8

3h2
I5 þ

16

9h4
I7


 �
€cx; ð18Þ

�
q
qy

A44w þ
4

3h2
ðF12 þ 2F66Þ

q2w
qx2

þ F22
q2w
qy2


 �� �

þ ðD12 þ D66Þ
q2cx

qxqy
þ D66

q2cy

qx2
þ D22

q2cy

qy2
� A44cy

¼ �
4

3h2
I5 �

4

3h2
I7


 �
q €w
qy

þ I3 �
8

3h2
I5 þ

16

9h4
I7


 �
€cy; ð19Þ

where the modified stiffness are

Aii ¼ Aii �
8

h2
Dii þ

16

h4
Fii; Dij ¼ Dij �

8

3h2
Fij þ

16

9h4
Hij ;

Fij ¼ Fij �
4

3h2
Hij ði; j ¼ 1; 2; 6; 4; 5Þ:

Eqs. (17)–(19) may be normalized using the transformation (12). The non-dimensional governing
equations for free vibration analysis of symmetric honeycomb panels are written as

a55f
2
a
q2W
qx2

þ a44f
2
b
q2W
qZ2 �

16
9

h11f
4
a
q4W
qx4

þ 2ðh12 þ h66Þf
2
af
2
b

q4W
qx2qZ2

þ h22f
4
b
q4W
qZ4

� �
þ

q
qx

a55faCx þ
4
3

f 11f
3
a
q2Cx

qx2
þ ð f 12 þ 2f 66Þfaf

2
b
q2Cx

qZ2

� �h i

þ
q
qZ

a44fbCy þ
4
3

ð f 12 þ 2f 66Þf
2
afb

q2cy

qx2
þ f 22f

3
b

q2Cy

qZ2

 !" #

þ l4 i1W � 16
9

i7 f2a
q2W
qx2

þ f2b
q2W
qZ2

� �
þ 4
3

i5 �
4
3

i7
�  

fa
qCx

qx þ fb

qCy

qZ


 �� �
¼ 0; ð20Þ

�
q
qx

a55faW þ 4
3h2

f 11f
3
a
q2W
qx2

þ ð f 12 þ 2f 66Þfaf
2
b
q2W
qZ2

� �h i
þ d11f

2
a
q2Cx

qx2
þ d66f

2
b
q2Cx

qZ2 � a55Cx þ ðd12 þ d66Þfafb
q2Cy

qxqZ

þ l4 �4
3

i5 �
4
3

i7
�  

qW
qx þ i3 �

8
3

i5 þ
16
9

I5
�  

Cx

h i
¼ 0; ð21Þ
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�
q
qZ

a44fbW þ 4
3

ð f 12 þ 2f 66Þf
2
afb

q2W

qx2
þ f 22f

3
b

q2W
qZ2


 �� �

þ ðd12 þ d66Þfafb

q2cx

qxqZ
þ d66

q2Cy

qx2
þ d22

q2Cy

qZ2 � a44Cy

þ l4 �43 i5 �
4
3 i7

�  qW

qZ
þ i3 �

8
3 i5 þ

16
9 i7

�  
Cy

� �
¼ 0; ð22Þ

where

aii ¼
Aij

E0h
¼ aii � 8dii þ 16f ii; dij ¼

Dij

E0h
3
¼ dij �

8
3

f ij þ
16
9

hij;

f ij ¼
Fij

E0h
5 ¼ f ij �

4
3

hij ði; j ¼ 1; 2; 6; 4; 5Þ:

For a simply supported honeycomb panel, an exact analytical solution may be sought in the
same series form as in Eq. (14). A standard eigenvalue problem described in Eq. (15) may be
formulated upon substitution of Eq. (14) into Eqs. (20)–(22). The two matrices defining the
eigenvalue problem of Eq. (15) are now written as

½Mmn� ¼

i1 þ
16
9

i7½ðmpfaÞ
2
þ ðmpfbÞ

2
� �4

3
i5 �

4
3

i7
�  

mpfa �4
3

i5 �
4
3

i7
�  

npfb

i3 �
8
3

i5 þ
16
9

i7 0

symmetric i3 �
8
3

i5 þ
16
9

i7

2
664

3
775;

½Kmn� ¼

a55m
2 þ a44n

2 þ D1 a55m � D2 a44n � D3
d11m

2 þ d66n
2 þ a55 ðd12 þ d66Þm n

symmetric d66m
2 þ d22n

2 þ a44

2
64

3
75;

where

D1 ¼ 16
9
fh11m

4 þ 2ðh12 þ 2h66Þm
2n2 þ h22n

4g; D2 ¼ 4
3
f f 11m

3 þ ð f 12 þ f 66Þm n2g;

D3 ¼ 4
3
f f 22n

3 þ ð f 12 þ f 66Þm
2ng:

3. Results and discussions

For a given simply supported rectangular honeycomb panel, eigenvalues of free flexural
vibration associated with each of the three plate theories may be readily obtained from the
equations presented in the previous section.
As the first test case, the natural frequencies of flexural vibration for rectangular isotropic plates

are studied. The plates, made of aluminum, have a length of 1.25m, a width of 1m, and variable
thicknesses between 0.002 and 0.2m. The material properties used in this test case are given in
Table 1. The first four natural frequencies of isotropic plates, obtained using the CPT, the IPT and
the TSDPT for various plate thicknesses, are plotted in Fig. 4. It is expected that the differences in



ARTICLE IN PRESS

Table 1

Plate and panel descriptions

Cases Description Geometry Material properties

1 Isotropic plate a ¼ 1:25m E ¼ 69GPa

(three plate theories b ¼ 1:0m G ¼ 26GPa

used) h variable n ¼ 0:33

2 Honeycomb panel Panel:

(three plate theories used) a ¼ 1:25m; b ¼ 1:0m
Cell: Ec ¼ 69GPa

lc ¼ hc ¼ 1:833mm; yc ¼ 30
�; Gc ¼ 26GPa

tc ¼ 0:0254mm; a ¼ hc=h ¼ 0:8 nc ¼ 0:33
two identical face sheets: Ef ¼ 69GPa

hf ¼ ð1� aÞh=2 Gf ¼ 26GPa

nf ¼ 0:33

3 Honeycomb panel Panel:

(TSDPT) a ¼ 1m; b ¼ 1:0m
h ¼ 0:01; 0:05; 0:1; 0:2m
Cell: Ec ¼ 69GPa

lc ¼ hc ¼ 1:833mm; yc ¼ 30
�; Gc ¼ 26GPa

tc ¼ 0:0254mm; nc ¼ 0:33
a varying between 0 and 1
two identical face sheets: Ef ¼ 69GPa

hf ¼ ð1� aÞh=2 Gf ¼ 26GPa

nf ¼ 0:33
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eigenvalues or natural frequencies obtained using the CPT and the two other plate theories should
be negligibly small for thin plates, and somewhat small for moderately thick, and significant for
thick plates. It is known that the IPT predicts accurate natural frequencies for moderately thick
isotropic plates. An examination of Fig. 4 indicates that the natural frequencies obtained using the
IPT and the TSDPT are almost identical for thin, moderately thick and thick plates. However, the
results obtained from the CPT are accurate only for thin plates characterized by thickness-to-
length ratios ðfbÞ less than 0.05. For moderately thick plates ð0:05ofbo0:1Þ; the CPT results start
to diverge from those obtained using the IPT and/or TSDPT. For thick plates ðfb40:1Þ; the CPT
significantly over-predicts the natural frequencies.
In the second test case, free flexural vibration of honeycomb panels is studied. The

rectangular panels have two aluminum face sheets, and an aluminum core of hexagonal
cells illustrated in Fig. 5. Table 1 describes the honeycomb panels and their core. The
panel thicknesses are allowed to vary between 0.002 and 0.2m. The equivalent core
properties were calculated using the correlations given by Gibson and Ashby [13], and
are presented here for reference: E1 ¼ 0:212MPa;E2 ¼ 0:318MPa;E3 ¼ 1:4721GPa;G12 ¼
0:0187MPa;G13 ¼ 208:01MPa;G23 ¼ 329:35MPa; r ¼ 57:60 kg=m3; n12 ¼ 0:33; n21 ¼ 0:4950:
It is mentioned that the shear modulus G23; used in this paper, is the average of the upper and

lower bounds given by Gibson and Ashby.
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Fig. 4. (a) The first natural frequencies obtained using different plate theories for isotropic plates in case 1; (b) the

second natural frequencies; (c) the third natural frequencies; (d) the fourth natural frequencies. Key: —, TSDPT; – -

IPT; - - - CPT.

Fig. 5. Nomenclature of a typical honeycomb cell.
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The first four natural frequencies versus the panel thickness, obtained using the three plate
theories are plotted in Fig. 6. In this case, it is clear that the CPT and the IPT yield acceptable
results only for extremely thin panels ðfbo0:01Þ: In general, neither the CPT nor the IPT yields
satisfactory results for honeycomb panels. One of the reasons for this is that both the CPT and the
IPT assume that the straight material lines normal to the mid-plane before deformation remain
straight after deformation. For honeycomb panels having thick and soft cores, the straight
material line assumption is no longer valid. In other words, the effects of shear deformation in
honeycomb panels cannot be neglected; nor can they be adequately addressed by introducing a
shear correctional coefficient. It is necessary to use a higher order plate theory, such as Reddy’s,
for the vibration analysis of honeycomb panels.
In the third test case, natural frequencies and frequencies normalized with respect to the panel

weights were obtained using Reddy’s TSDPT to study the effects of core thickness and panel
thickness. For this purpose, a square honeycomb panel described in Table 1 is used. The
fundamental frequencies and the frequency-to-weight ratios versus the core-to-thickness ratios are
shown in Fig. 7 for four plate thickness ratios representing extremely thin, moderately thin,
Fig. 6. (a) The first natural frequency obtained using different plate theories for honeycomb panels in case 2; (b) the

second natural frequencies; (c) the third natural frequencies; (d) the fourth natural frequencies. Key: —, TSDPT; – -

IPT; - - - CPT.
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Fig. 7. The first natural frequencies and frequency-to-weight ratios vs. core-to-panel thickness ratio for: (a) an

extremely thin honeycomb panel ðfa ¼ fb ¼ 0:01Þ in case 3; (b) a thin honeycomb panels ðfa ¼ fb ¼ 0:05Þ in case 3; (c)
a moderately thick honeycomb panels ðfa ¼ fb ¼ 0:1Þ in case 3; (d) an extremely thick panel ðfa ¼ fb ¼ 0:2Þ in case 3.
Key: —, frequencies; - - - frequency-to-weight ratios.
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moderately thick, and thick panels. It can be seen that the frequency-to-weight ratios increase
with the core-to-thickness ratios steadily in the range [0, 0.8], and sharply in the range [0.8, 0.98].
Many commercial grade honeycomb panels have core thickness ratios falling within the latter
range. Examples include A502C, A505C, A507C and A510C of TEKLAM’s aluminum
honeycomb series, having core-to-panel thickness ratios of 0.8, 0.9, 0.93 and 0.95, respectively.
When designing a honeycomb that has to meet the requirement of a certain absolute frequency
value, it is important to realize that the natural frequencies increase with the core-to-panel
thickness ratio until about 0.95, beyond which natural frequencies start to drop drastically for
thin honeycomb panels. For moderately thin and thick panels, the decrease in the natural
frequencies occurs at a core thickness ratio lower than 0.95, although the drastic change in natural
frequencies occurs at 0.98. As a result, for thick panels, there is some penalty in achieving the
absolute value of a natural frequency when designing the honeycomb panels for economic
benefits. Similar conclusions, can be drawn for high vibration modes from the fourth natural
frequencies, obtained for the same panels and shown in Fig. 8.
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Fig. 8. The fourth natural frequencies and frequency-to-weight ratios vs. core-to-panel thickness ratio for (a) an

extremely thin honeycomb panel ðfa ¼ fb ¼ 0:01Þ in case 3; (b) a thin honeycomb panels ðfa ¼ fb ¼ 0:5Þ in case 3; (c) a
moderately thick honeycomb panels ðfa ¼ fb ¼ 0:1Þ in case 3; (d) an extremely thick panel ðfa ¼ fb ¼ 0:2Þ in case 3.
Key: —, frequencies; - - - frequency-to-weight ratios.
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4. Conclusions

This paper presents comparative studies of the free flexural vibration of honeycomb panels
using three different plate theories. Numerical results indicate that the classical and improved
plate theories are not adequate for the flexural vibration analysis of honeycomb panels. Using the
Reddy third order shear deformation plate theory and Gibson and Ashby correlations, the
authors investigated the effects of panel thickness and core thickness on flexural vibration of
symmetric honeycomb panels.
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